a2 United States Patent

Letocha et al.

US009146905B2

US 9,146,905 B2
Sep. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54) GENERATING PAGE-ORIENTED DATA FOR
PRINTING DYNAMIC DOCUMENTS

(75) Inventors: Boris Letocha, Hradec Kralove (CZ);
Jan Knoulich, Hradec Kralove (CZ)

(73) Assignee: GMC SOFTWARE AG (CH)
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1087 days.

(21) Appl. No.: 12/433,252

(22) Filed: Apr. 30, 2009

(65) Prior Publication Data
US 2010/0110495 A1l May 6, 2010

(30) Foreign Application Priority Data

Nov. 6,2008 (CH) ooveveeerrcriecncrce e 1740/08
(51) Imt.ClL
GO6F 1721
GO6F 17/24
GOGF 3/12
(52) US.CL
CPCcccee. GO6F 17/211 (2013.01); GO6F 3/122
(2013.01); GOGF 3/1215 (2013.01); GOGF
3/1243 (2013.01); GOGF 3/1282 (2013.01);
GO6F 17/248 (2013.01); GOG6F 3/125
(2013.01); GO6F 3/1205 (2013.01)
(58) Field of Classification Search
CPC ..o GOG6F 3/122; GOG6F 3/1265
USPC ittt e seneneaes 707/1
See application file for complete search history.

(2006.01)
(2006.01)
(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS
5,923,013 A *

7,127,520 B2
2001/0047369 Al

7/1999 Suzuki etal. 358/1.18
10/2006 Ladd et al.
11/2001 Aizikowitz et al.

2002/0049702 Al* 4/2002 Aizikowitz et al.
2003/0189724 Al* 10/2003 Kloosterman et al. ..

2003/0189725 Al* 10/2003 Kloosterman etal. 358/1.18
2003/0189726 Al* 10/2003 Kloosterman etal. 358/1.18
2003/0189727 Al* 10/2003 Kloosterman etal. 358/1.18
2004/0066527 Al* 4/2004 Kloosterman et al. 358/1.15
2005/0050442 Al 3/2005 Pope et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0837401 A 4/1998
EP 0837401 A 4/1998
(Continued)
OTHER PUBLICATIONS

European Search reported EP 09 00 5555, dated Dec. 11, 2012.

Primary Examiner — Nicholas Pachol
(74) Attorney, Agent, or Firm — Ostrolenk Faber LLP

(57) ABSTRACT

For generating from variable data page-oriented data for
printing dynamic documents, a layout module (13) is linked
in series with one or more data processing modules (121, 122)
to a data input module (11). The data input module (11) loads
(S3) a part of the variable data into local memory and passes
it by reference through the data processing modules (121,
122) to the layout module (13). The data processing modules
(121,122) are configured to read (S8¢, S13¢, S13f) a data field
from the variable data in the local memory only in cases
where the data field is to be processed by the respective data
processing module. The layout module (13) generates (S8)
the page-oriented data output from unprocessed and pre-
processed data fields, defined in each case by a respective
pointer from the data processing modules. Thereby, alloca-
tion and de-allocation of local memory is reduced and per-
formance improved.

20 Claims, 6 Drawing Sheets

1217

Workflow Con.

Process Module

Process Module

Layout Module

Input Module

Output Module.

B
.
-

Local Memory

[—17
11

~13
-——,14 Printer
~15 A

LU

~

|16
N

US 9,146,905 B2
Page 2

(56)

2005/0160362
2006/0023238
2006/0106662
2007/0055925
2008/0074685
2008/0259387
2008/0266605

U.S. PATENT DOCUMENTS

Al*
Al*
Al*
Al*
Al*
Al*
Al*

References Cited

7/2005
2/2006
5/2006
3/2007
3/2008
10/2008
10/2008

2009/0051947 Al*
2009/0153905 Al*

Obradovic et al.
Blaszyk et al. .

715/527
358/1.13

Palop et al. 705/8 EP

Giannetti 715/511 EP

Sakamotocccoocvenrene 358/1.9

Hirai 358/1.15

Nishide ...cccoooovvviininnnnnn 358/1.17 * cited by examiner

2/2009 Kuroshima
6/2009 Cyman et al. .
2009/0310156 Al* 12/2009 Yamazaki

FOREIGN PATENT DOCUMENTS

1102204 A
1102204 A

US 9,146,905 B2

y

!

k

Sheet 1 of 6

Sep. 29, 2015

R

Pl |

) KIOUIQIA] T8O0

“Fompoy mdinp

™ 9MpoJA Induy §

=

“S[NPOJA] INOAR]

U.S. Patent

"3[NPOJA] $58001 ;

L R X

S[NPOJA] $59901 |

o]

=

10D MO[IOM

L)

QT
ABA

181

3.10)S BIR(

U.S. Patent Sep. 29, 2015 Sheet 2 of 6 US 9,146,905 B2

Fig. 2

Define Workflow
~Configuration

S2017
1

Define Input
| _.Configuration

Define Processing
~Configuration

Define Output
{..Configuration

Define Optional
—~+~Configuration

e

Store Workflow
..Configuration

US 9,146,905 B2

Sheet 3 of 6

Sep. 29, 2015

U.S. Patent

/ /

f /

I[MPOIN
IMPOIA Suissadoag PO
noAery Ble(q indug vleQq

Cewm e e mmm WS e e M AW

€ ‘311

US 9,146,905 B2

Sheet 4 of 6

Sep. 29, 2015

U.S. Patent

p "L

$17 8¥ Ly \ 1474

“
\ SMPO f dMpo
A M nofe| A ndu
1= 77 ".E “ 4 ,
" ampopt — — —ampopy L — — Smpo
mdngl *duy | IS

wzo%wﬂ w

/

U.S. Patent Sep. 29, 2015 Sheet 5 of 6 US 9,146,905 B2

11 121 122 |13
S2a S1
s3| % Seb | T B
9 S
|7::| S4a Seb P
Ot

S5 S6a S6d
ﬁ\b
g
EEI/S7

S8d

$10 S8 F—S 5| o
Ho st1a =
1 v S1b 1 s11c

— —>
| S13b
S12 S13a/E%/S13d
\L, S13e

S13f 2 S14

815b S15c

%} Sira S17b | s17¢
| ;

S16
Fig. 5

U.S. Patent Sep. 29, 2015 Sheet 6 of 6 US 9,146,905 B2

R1 R11 R2 R3 L
—> | —> —>
> sk > L s > L |sF
F1/E| F1/E| F1/E|
lSFg SF SF
F2 FZ/EE FZ/EE
=*1 |sF = lSF <> |sF
F31~ F31 -~ o F317
F32. °F F32. lSF F32 lSF
SFl FRI SFl FRI SFl FRI
| - Fq | " F4 | " F4
SF SF SF
< F5 < F5 < F5
R R R
f

Fig. 6

US 9,146,905 B2

1

GENERATING PAGE-ORIENTED DATA FOR
PRINTING DYNAMIC DOCUMENTS

BACKGROUND

1. Field of the Disclosure

The present application relates to a computer system and a
computer-implemented method for generating page-oriented
data for printing dynamic documents. Specifically, the
present invention relates to a computer system and a com-
puter-implemented method for generating, from variable data
stored in a data store, page-oriented data output for printing
dynamic documents, whereby the variable data is pre-pro-
cessed by one or more data processing modules prior to
generating the page-oriented data.

2. Related Art

There are many data processing applications where data is
retrieved from a data store and processed at various process-
ing stages, before it is passed to a data consumer which
generates some output based on this pre-processed data. Typi-
cal data stores include local or remote (networked) hard disks,
data tape, or removable data carriers such as compact discs
(CD), digital versatile disks (DVD) or flash memory devices.
Particularly in data processing applications, such as dynamic
and high speed printing based on variable data, where differ-
ent processing modules with different processing functions
can be selected and combined freely for pre-processing the
data, at each processing stage, the variable data is typically
loaded as a complete data set from the data store into the local
memory of the computerized processing system. For
example, the variable data is loaded completely into random
access memory (RAM). After data processing is completed at
a processing stage, the processed data is stored back into the
data store. Thus, at each processing stage, computer resources
and time are used for allocating/de-allocating local memory,
and transferring data between the data store and the local
memory. In some applications it may be possible to reduce
data transfer between the data store and the local memory, if
the different processing modules are designed to use the local
memory for passing data from one processing stage to the
next. Nevertheless, using the local memory for transferring
data between processing modules requires additional
memory space and necessitates allocation/de-allocation of
local memory at each processing stage. However, dynamic
printing applications which generate page oriented data out-
put based on variable data input, require typically a high
performance throughput for handling high volumes of data
records and corresponding page output. For example, print-
ing of variable information letters and/or invoices directed to
subscribers of a telecom provider, or other personalized mass
mailing applications, may involve hundreds of thousands or
even millions of records and corresponding print pages. For
each individual page to be printed, page-oriented data is gen-
erated from variable data, e.g. address, invoice and/or other
custom-oriented information associated with individual per-
sons, whereby the page-oriented data defines a layout of a
page including the placement of properly formatted data
fields derived from the variable data. For example, the page-
oriented data output is in the form of a print stream such as
Adobe PDF (Portable Document Format) as defined in ISO
32000-1:2008, Adobe PostScript, IBM AFPDS (Advanced
Function Presentation Data Streaming), PPML (Personalized
Print Markup Language), 1IJPDS (InkJet Printer Data
Stream), or other representations of two-dimensional docu-
ments. On one hand, great flexibility may be obtained from
selecting and combining various processing modules for pre-
processing the variable data, prior to generating the page-

10

15

20

25

30

35

40

45

50

55

60

65

2

oriented data output, e.g. for filtering, formatting and merging
the variable data into a page-oriented layout. On the other
hand, performance and throughput are reduced by the data
exchange taking place between individual modules and the
data store, as well as the allocation and de-allocation of local
memory performed at the individual processing stages. How-
ever, the page-oriented data output must be generated fast
enough to support high speed printing systems. Particularly,
the pre-processing and merging of the variable data into the
page-oriented layout needs to be performed fast enough to
keep the printer system running continuously throughout a
defined production period, e.g. several hours or even a whole
day. Thus, in the known methods for generating from variable
data page-oriented data for printing dynamic documents there
is a tradeoff between flexible pre-processing of the variable
data at run-time (during production) and fast, continuous
printing of the dynamic documents.

U.S. Pat. No. 7,127,520 describes a system for transform-
ing an input data stream of one format into an output data
stream of another format. According to U.S. Pat. No. 7,127,
520, various input connector modules receive input data
streams and are each connected to one of several input queues
which store the input data stream. Filters are used to remove
irrelevant data from the received input data streams. Several
job threads format in parallel the input data streams to pro-
duce output data streams which are stored in output queues.
Thread job managers detect events in the input data stream
and generate messages associated with the detected events.
Based on the messages, the output data streams are produced
and stored in output queues. For example, a “pageout” pro-
cess produces page layout for creating documents for printing
or faxing.

US 2005/0050442 describes a system for generating cus-
tomized documents using dynamic information selected from
a database based on a customer’s business rules and specific
transaction data, e.g. a customer’s name and/or address. The
transaction data is received through batch data files available
through FTP (File Transfer Protocol) servers and/or web-
enabled interactive ordering systems. When a complete set of
content is assembled for a transaction, a dynamic document
generator and assembler assembles the customized docu-
ment.

US 2002/0049702 describes a method for creating a series
of customized document instances from a single dynamic
variable information document, referred to as dynamic docu-
ment. A dynamic document includes a dynamic document
template with placeholders indicating the location where
dynamic objects are to be placed. According to US 2002/
0049702, a dynamic document is associated with a plurality
of'pointers to a plurality of data sources such as database data
and media items. Specifically, the values to be associated with
a dynamic object are defined in terms of logical tables and
attributes of their records, or references to external systems
such as a file name or an URL (Uniform Resource Locator)
identifying a content object.

EP 0837401 describes a method for creating complex lay-
outs with variable data for high speed variable data printing,
e.g. using ink jet or laser jet systems printing on paper moving
at the speed of up to 305 meters per minute. A merge software
performs data reformatting functions, such as case conver-
sion or word concatenation, and re-flows text based on vari-
able data insertion, associating fields in variable data records
with variable data placeholders for appropriate locations in a
layout template. User callable program routines can be linked
to the merge software for performing custom user functions.

US 2001/0047369 describes a three stage pipeline process
for generating dynamic documents. At the first stage, a data

US 9,146,905 B2

3

iterator performs a data processing task by selecting the next
record from a recipients list and computing the set of page
layouts and content objects needed for this instance. The
result of the computation is forwarded to a document instan-
tiator via a content objects buffer. The data iterator continues
the data processing task as long as the recipients list has not
been exhausted and the buffer storage is not full. At the
second stage, the document instantiator retrieves the next
collection of layouts and content objects from the content
objects buffer, and employs the appropriate layout engine for
creating the specific document instance and code specifying
the rendering of the document instance. At the third stage, a
merge processor generates an output stream based on the code
specifying the rendering of the document instance.

SUMMARY

It is an object of this invention to provide a computer
system and a computer-implemented method for generating
from variable data page-oriented data for printing dynamic
documents, which system and method enable a flexible selec-
tion of various processing modules for pre-processing
sequentially the variable data, prior to generating the page-
oriented data output, at a pace fast enough to keep the printer
system running continuously throughout a defined produc-
tion period. In particular, it is an object of the present inven-
tion to provide a computer system and a computer-imple-
mented method which enable a flexible configuration of the
pre-processing modules while keeping low the transfer of
variable data between a data store and local memory, as well
as the allocation/de-allocation of local memory used for
accessing and processing the variable data.

According to the present invention, at least some of these
objects are achieved particularly through the features of the
independent claims. In addition, further advantageous
embodiments follow from the dependent claims and the
description.

According to the present invention, the above-mentioned
objects are particularly achieved in that for generating page-
oriented data output for printing dynamic documents, from
variable data stored in a data store, a layout module is linked
in series with one or more data processing modules to a data
input module. A part of the variable data is loaded by the data
input module from the data store into local memory of the
computer system which generates the page-oriented data
from the variable data. For example, to initiate data process-
ing, a request for data is issued by the layout module and
forwarded from the layout module through the data process-
ing modules to the data input module, and the data input
module loads the variable data from the data store into local
memory in response to this request for data. Thus, the request
for data is forwarded by each of the date processing modules
to the preceding data processing or data input module, respec-
tively. The variable data is passed by reference from the data
input module through the data processing modules to the
layout module, using in each case a pointer to the part of the
variable data loaded in the local memory. The data processing
modules read a data field from the variable data loaded in the
local memory only in cases where the data field is configured
to be processed by the respective data processing module. In
such cases, the respective data processing module generates
pre-processed variable data from the data field. Otherwise, if
the data field is not specified to be processed by the respective
data processing module, the data processing module merely
forwards the data field by passing on the pointer to the sub-
sequent data processing module or layout module, respec-
tively, without either reading or processing the data field.

15

20

30

40

45

4

Subsequently, the page-oriented data output is generated by
the layout module from pre-processed variable data and (un-
processed) variable data loaded by the data input module,
using in each case the respective pointer received from the
data processing module linked directly to the layout module.
Passing on the variable data by reference and limiting
memory access to those data processing modules specified to
process a specific data field has the advantage that allocation
and de-allocation of local memory is reduced to instances and
times, where the respective data field needs be processed by a
data processing module. Thus, no resources are used for
reading the variable data from the local memory by a data
processing module when the respective data processing mod-
ule is specified to forward a specific data field without further
processing to a subsequent data processing or layout module.
Thus, a plurality of different data processing modules can be
flexibly linked in series for sequential processing of the vari-
able data, without wasting resources for memory allocation/
de-allocation, in each case where a data field is not specified
to be processed by one of data processing modules.

In a preferred embodiment, in cases where the data field is
configured to be processed by the respective data processing
module, the respective data processing module stores the
pre-processed variable data in the local memory separate
from the variable data loaded by the data input module, and
uses a pointer to the pre-processed variable data for passing
the pre-processed variable data by reference to the layout
module. Storing a separate copy of the pre-processed data
field, rather than overwriting the original data field with the
pre-processed data, has the advantage that various data pro-
cessing modules can be forked and processed in parallel
(forked threads), the data processing modules of each fork
having access to the original, unprocessed data field in the
local memory.

In an embodiment, there are data processing modules con-
figured to perform a combined (multi-field) operation on
more than one data field. In such cases, the respective data
processing module generates pre-processed variable data
from these data fields, stores the pre-processed variable data
in the local memory, and uses a pointer to the pre-processed
variable data for passing the pre-processed variable data by
reference to the layout module.

Preferably, the variable data is loaded from the data store
record by record and at least one data field of a record is
loaded at a time. The variable data is passed field by field by
the data input module through the data processing modules to
the layout module, using in each case a pointer to the data field
loaded in the local memory. The data processing modules
read the loaded data field from the local memory only in cases
where the loaded data field is configured to be processed by
the respective data processing module, and in such cases the
respective data processing module generates from one or
more of the loaded data fields a pre-processed data field,
stores the pre-processed data field in the local memory, and
uses a pointer to the pre-processed data field, instead of the
pointer to the loaded data field, for passing the pre-processed
data field by reference to the layout module. Subsequently,
the layout module generates the page-oriented data output
from loaded data fields and pre-processed data fields associ-
ated with a record, using in each case the respective pointer to
the loaded (unprocessed) data field or pre-processed data
field, respectively, received from the data processing module
linked directly to the layout module. Thus the data input
module is configured to drive the data fields by reference
sequentially through the series of data processing modules to

US 9,146,905 B2

5

the layout module, the reference (pointer) only being replaced
when a pre-processed version of a data field is generated by a
data processing module.

In a further embodiment, the variable data is loaded from
the data store record by record, each data record having a
hierarchical structure. The data fields associated with one
hierarchical level of a record are loaded into the local memory
at a time. An indication of the current hierarchical level is
communicated from the data input module through the data
processing modules to the layout module. For example, the
current hierarchical level is communicated by the data input
module forwarding through the data processing modules to
the layout module sink commands for descending to a lower
hierarchical level, and raise commands for ascending to a
higher hierarchical level. Preferably, the variable data is
loaded from the data store record by record, the data process-
ing modules are provided with information about the struc-
ture of the record, and the pointer includes an index for
identifying a data field with reference to the structure of the
record. Thus, having access to information about the data
structure of a data record, the data processing and layout
modules are in a position to determine efficiently the data
field currently processed based on the sink and raise com-
mands and an index to the respective field.

In addition to the computer system and the computer-
implemented method for generating page-oriented data out-
put for printing dynamic documents, from variable data
stored in a data store, the present invention also relates to a
computer program product comprising computer program
code means for controlling one or more processors of a com-
puter system, preferably a computer program product com-
prising a computer-readable medium containing the com-
puter program code means therein.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be explained in more detail, by
way of example, with reference to the drawings in which:

FIG. 1 shows a block diagram illustrating schematically a
computer system for generating from variable data page-
oriented data output for printing dynamic documents.

FIG. 2 shows a flow diagram illustrating an exemplary
sequence of preparatory steps for configuring a workflow for
generating the page-oriented data output from variable data.

FIG. 3 shows a block diagram illustrating an example of a
basic configuration for generating the page-oriented data out-
put for printing dynamic documents.

FIG. 4 shows a block diagram illustrating an example of a
more complex configuration for generating the page-oriented
data output.

FIG. 5 shows a timing diagram illustrating an exemplary
sequence of steps for generating from variable data page-
oriented data output for printing dynamic documents.

FIG. 6 shows a block diagram illustrating an example of
processing variable data by stepping through data records
field by field.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In FIG. 1, reference numeral I refers to an exemplary
configuration of a computer system for generating from vari-
able data 20 page-oriented data output for printing dynamic
documents. Computer system | comprises one or more com-
puters, each having one or more processors, and is connected
to a data store 2, an operator terminal 3, and a printer 4.
Computer system 1 further comprises local memory 16, e.g.

25

40

45

50

60

6

RAM, a workflow configuration 17, and various functional
modules, namely at least one data input module 11, one or
more data processing modules 121, 122, one or more layout
modules 13 and optionally one or more imposition modules
14 and output modules 15. Preferably, the functional modules
are implemented as programmed software modules compris-
ing computer program code which is stored on a computer-
readable medium arranged in a fixed or removable fashion.

The data store 2 includes one or more hard disks, data
tapes, and/or removable data carriers such as compact discs
(CD), digital versatile disks (DVD) or flash memory devices
for storing the variable data 20. Preferably, the variable data
20 is organized as a data file of a plurality of data records, each
data record having a data structure with one or more data
fields. Preferably, the data records are organized with a hier-
archical data structure, having more than one hierarchical
level; for example, the variable data 20 is defined in an XML
file (Extensible Markup Language).

In a scenario where computer system I is configured to
generate the page-oriented data output from variable data 20
provided through an online document composition process,
e.g. over the Internet, printer 4 is a conventional laser or inkjet
printer, for example. In industrial batch printing applications,
however, printer 4 is preferably a high speed printer config-
ured for continuous feed. For example high speed printers are
configured to print at speeds of at least 100 pages/minute,
preferably at speeds of 1000-1500 pages/minute or even
faster, with future improvements in printer manufacturing.
For industrial application, these high speed printers are con-
figured to operate at continuous feed over several days,
weeks, or even months. In a further embodiment, printer 4
comprises more than one printer unit which operate and print
in parallel and thus increase even further the overall printing
throughput. For continuously feeding printer 4, computer
system 1 is configured to generate the page-oriented data
output faster (or at least as fast) as the print speed of printer 4.
For example, using computers with conventional processing
power and disk speed, computer system 1 is configured to
generate page-oriented data for about 30000 pages/minute;
with increased processing power and faster disks, computer
system 1 is configured to generate page-oriented data for
about 40000 pages/minute.

As illustrated schematically in FIG. 1, the operator termi-
nal 3 comprises data entry elements, such as a keyboard
and/or a pointing device, as well as a display 30 for displaying
data input/output through graphical user interfaces.

The workflow configuration 17 is defined and stored by a
workflow configuration tool running on computer system [or
operator terminal 3. The workflow configuration tool is con-
figured to receive from a human operator instructions for
configuring a workflow for generating from the variable data
20 page-oriented data output for printing dynamic docu-
ments. Preferably, the workflow is configured by the operator
via a graphical user interface shown on display 30.

As illustrated in FIG. 2, in step S201, the workflow con-
figuration 17 is defined by the operator selecting, e.g. from a
list, at least one data input module, one or more data process-
ing modules, one or more layout modules, as well as optional
imposition and output modules. For example, the selected
modules are arranged and linked by way of drag and drop
operations in a user interface with graphical representation.

FIG. 3 shows a graphical representation (e.g. shown on
display 30) of an example of a basic workflow configuration
17, comprising one data input module 31 and one layout
module 33 interconnected by one data processing module 32.

FIG. 4 shows a graphical representation (e.g. shown on
display 30) of an example of a more complex workflow con-

US 9,146,905 B2

7

figuration 17, comprising two data input modules 41, 42,
linked via two sequential data processing module 43, 44, e.g.
a merging module and filter module, to two layout modules
45, 46. The layout modules 45, 46 are connected via a mixer
module 47 to optional imposition module 48. The imposition
module 48 is connected to optional output module 49 con-
trolling the printer 4.

Thus, a worktlow configuration 17 includes typically a data
inputmodule 11, 41, 42 linked through a series of one or more
data processing modules 32, 43, 44, 121, 122 to a layout
module 13, 33, 45, 46.

The data input modules 11, 41, 42 are configured to load
the variable data 20 from data store 2 into local memory 16.
As will be explained later in more detail, the data input
modules 11, 41, 42 are configured to load the variable data 20,
in response to a request for data received from the subsequent
data processing module 32,43, 121 which is linked directly as
a successive module to the respective data input module 11,
41, 42. Furthermore, the data input modules 11, 41, 42 are
configured to forward the variable data 20 by reference to the
subsequent data processing modules 32, 43, 121 which are
linked as successive modules to the respective data input
module 11, 41, 42, using in each case a pointer to the variable
data loaded in the local memory 16. Preferably, the data input
modules 11, 41, 42 are configured to load the variable data 20
record by record. For example, all data fields associated with
ahierarchical level of arecord are loaded at a time. Preferably,
the data input modules 11, 41, 42 are configured to forward
the variable data 20 field by field, using in each case a pointer
to the data field loaded in the local memory 16. The data input
modules 11, 41, 42 are configured to communicate to the data
processing modules 32,43, 44,121, 122 the hierarchical level
processed by passing through the data processing modules
32,43, 44,121,122 sink commands for descending to a lower
hierarchical level of the record currently, and raise commands
for ascending to a higher hierarchical level of the record. The
data input modules 11, 41, 42 are further configured to com-
municate to the data processing modules 32, 43, 44, 121, 122
the data field currently processed by passing through the data
processing modules 32, 43, 44, 121, 122 so called set field
commands which include a pointer to the local memory 16
and an index for identifying the data field with reference to the
structure of the data record.

The data processing modules 32, 43, 44, 121, 122 are
configured to (pre-) process the variable data 20 loaded in the
local memory 16 according to various functions or operations
associated in each case with the respective processing module
32,43, 44,121,122. As will be explained later in more detail,
the data processing modules 32, 43, 44, 121, 122 are further
configured to receive requests for data from a subsequent data
processing 44, 122 or layout module 13, 33, 45, 46 which is
linked directly as a successive module to the respective data
processing module 32, 43, 44, 121, and to forward the request
for data to the preceding data input 11, 41, 42 or data pro-
cessing module 43,121, which is linked directly as an anterior
module to the respective data processing module 32, 44, 122.
Furthermore, the data processing modules 32, 43, 44, 121,
122 are configured to receive the variable data 20 by reference
from the preceding data input 11, 41, 42 or data processing
module 32, 43, 121 which is linked directly as an anterior
module to the respective data processing module 32, 43, 44,
121, 122, and to forward the variable data 20 by reference to
the subsequent data processing 44, 122 or layout module 13,
33, 45, 46 which is linked directly as a successive module to
the respective data processing module 32, 43, 44, 121, 122.
The data processing modules 32, 43, 44, 121, 122 are config-
ured to read the variable data from the local memory 16, only

5

10

15

20

25

30

35

40

45

50

55

60

65

8

if the configuration of the respective data processing module
32, 43, 44, 121, 122 specifies the respective field to be pro-
cessed by the respective data processing module 32, 43, 44,
121, 122. For such cases, the data processing modules 32, 43,
44, 121, 122 are configured to generate pre-processed vari-
able data from the variable data, to store the pre-processed
variable data in the local memory 16 separate from the vari-
able data loaded by the data input module 11, 41, 42, and to
use a pointer to the pre-processed data field, instead of the
pointer to the loaded data field, for passing the pre-processed
data field by reference to the subsequent data processing
module 44, 122 or layout module 13, 33, 45, 46.

The layout modules 13, 33, 45, 46 are configured to assign
one or more data fields of the variable data 20 in each case to
a location or placeholder of a document layout. As explained
later in more detail, the layout modules 13, 33, 45, 46 are
configured as process drivers, initiating data processing by
requesting data from preceding data processing modules 44,
122 linked to the layout module 13, 33, 45, 46. Furthermore,
the layout modules 13,33, 45, 46 are configured to receive the
variable data 20 by reference from the preceding data pro-
cessing module 32, 43, 121 which is linked directly as an
anterior module to the respective layout module 13, 33, 45,
46, and to read the variable data from the local memory 16, by
using in each case the received pointer to the pre-processed
data field stored in the local memory 16 or the unprocessed
data field loaded in the local memory 16. Based on document
layout and/or template definitions, the layout modules 13, 33,
45, 46 are configured to generate the page-oriented data out-
put from the unprocessed and pre-processed variable data
read from the local memory 16.

Preferably, communication between data input modules
11, 41, 42, data processing modules 32, 43, 44,121, 122, and
layout modules 13, 33, 45, 46 is implemented through inter-
face calls to object interfaces associated with the input mod-
ules 11, 41, 42, data processing modules 32, 43,44, 121,122,
and layout modules 13, 33, 45, 46.

The data input modules 11, 41, 42, the data processing
modules 32, 43, 44, 121, 122, and the layout modules 13, 33,
45, 46 are provided with or configured to automatically deter-
mine information about the data structure of a record of the
variable data 20.

The imposition modules are configured to associate the
page-oriented data output to actual production size paper, e.g.
a continuous lane from a paper roll, having a width with more
than one page next to each other.

The output modules are configured to connect and control
the printer 4, and/or to generate a spool file for the printer 4.
The output modules are configured to feed the page-oriented
data output to peripheral devices such as printer 4 or display
30, and thus to print and/or display dynamic documents based
on the page-oriented data output. Depending on the embodi-
ment, functions of the imposition and/or output modules may
be incorporated into the layout modules.

In step S202, the operator defines the configuration of the
data input module 11, 31, 41, 42 selected in step S201. Spe-
cifically, the data input module 11, 31, 41, 42 is associated
with a specific file of variable data 20 on a defined data store
2. Furthermore, specified are the data fields of a variable data
record to be loaded by the data input module 11, 31, 41, 42.

In step S203, the operator defines the configuration of the
data processing module(s) 32, 43, 44, 121, 122 selected in
step S201. Specifically, the data field(s) to be processed by the
respective data processing module are selected, and one or
more operations to be performed on the selected data fields
are specified. For example, the data processing module 32
may be a data transformer configured to perform various

US 9,146,905 B2

9

transformations on a selected data field, e.g. reformat a
selected field (upper case, lower case, bold, italic, etc.), to
perform a combined (multi-field) operation on more than one
fields, e.g. concatenate several selected fields, or to perform
various other functions on one or more selected data fields.
The data processing module 43 is a merge module configured
to combine selected data fields provided by different data
input modules 41, 42. The data processing module 44 is a
filter module configured to filter selected data fields accord-
ing to specified filter criteria. Other data processing modules
may include text replacing or inserting modules. In an
embodiment, there are data processing modules 32, 43, 44,
121, 122 configured to process more than one data field at a
time, e.g. data sorting modules, data concatenating modules,
data minimum and/or maximum selecting modules, data
merging modules, and/or data grouping or ungrouping mod-
ules.

In step S204, the operator defines the configuration of the
layout module(s) 13, 33, 45, 46. Specifically, the data field(s)
to be included in the page-oriented output are selected and
associated in each case with a location or placeholder of a
defined document layout or template.

Subsequently, in step S205, optional post layout modules
such as mixer module 47, imposition module 48, or output
module 49 are configured by the operator.

In step S206, the defined workflow configuration 17 is
stored on computer system 1, including the configuration of
the respective functional modules.

In the following paragraphs, described with reference to
FIGS. 5 and 6 is an exemplary sequence of steps for generat-
ing the page-oriented data output from the variable data 20 for
printing dynamic documents. In FIG. 5, reference numerals 1,
121, 122, and 13 refer to the data input module, the two data
processing modules, and the layout module, as defined in the
workflow configuration 17 of computer system 1. Specifi-
cally, data input module 11 is linked through the series of data
processing modules 121 and 122 to layout module 13.

In step S1, the layout module 13 initiates generating the
page-oriented data output from the variable data 20, e.g. by
loading document layout and/or template definitions.

In step S2a, the layout module 13 initiates data processing
by issuing a request for data to the preceding data processing
module 122 linked directly to the layout module 13.

In step S2b, the data processing module 122 forwards the
request for data received from the layout module 13 to the
preceding data processing module 121 linked directly to the
data processing module 122.

In step S2¢, the data processing module 121 forwards the
request for data received from the subsequent data processing
module 122 to the preceding data input module 11 linked
directly to the data processing module 121.

In step S3, data input module 11 loads the variable data 20
from the data store 2 into the local memory 16, as specified in
the workflow configuration 17. Specifically, in step S3, data
input module 11 determines from the workflow configuration
17 the data file and data fields to be loaded and processed.
Moreover, the data input module 11 loads into the local
memory 16 the specified data fields associated with the data
file’s first data record, or the specified data fields associated
with one hierarchical level of the data record, based on the
data structure defining the layout of the data record. As illus-
trated schematically in FIG. 6, the data input module 11 loads
the data fields F1, F2, F31, F32, F4, F5 associated with record
R1, or, alternatively data fields F1, F2 associated with the first
hierarchical level of record R1. In FIG. 6, the variable data is
illustrated schematically by showing its data records R1,
R2, ..., R3 along a horizontal (record) axis r, and a record’s

10

15

20

25

30

35

40

45

50

55

60

65

10

data fields F1, F2, F31, F32, F4, F5, which are specified to be
accessed and processed, in the direction of vertical (field) axis
f. The data input module 11 controls and drives sequential
stepping through the variable data 20, record by record R1,
R2, R3, and field by field F1, F2, F31, F32, F4, F5. For that
purpose, the data input module 11 issues and forwards
through the data processing modules 121, 122 to the layout
module 13, sink commands S, set field commands SF and
raise commands R, as illustrated in FIG. 6. Thus, the data
input module 11 drives sequential and synchronous process-
ing of the variable data 20.

In step Sda, the data input module 11 issues to the subse-
quent data processing module 121 a sink command S, indi-
cating to the data processing module 121 that a data record R1
is being accessed.

In step S4b, the data processing module 121 forwards the
sink command S to the subsequent data processing module
122 linked directly to the data processing module 121.

In step Sdc, the data processing module 122 forwards the
sink command S to the layout module 13 linked directly to the
data processing module 122.

In step S5, the data input module 11 determines a pointer to
the variable data loaded in the local memory 16.

In step S6a, the data input module 11 issues to the subse-
quent data processing module 121 a set field command SF.
The set field command SF includes the pointer to the variable
data loaded in the local memory 16 and an index to the first
data field F1, indicating to the data processing module 121
that data field F1 is being passed (by reference).

In step S6b, based on its workflow configuration data, the
data processing module 121 determines whether it is speci-
fied to process the data field F1 referenced by the set field
command SF received in step S6a. In the present example,
data processing module 121 is not specified to process data
field F1, and data processing module 121 continues in step
S6c without reading data field F1 from the local memory 16.

In step S6c¢, data processing module 121 forwards to the
subsequent data processing module 122 the set field com-
mand SF received in step Séa.

In step S6d, based on its workflow configuration data, the
data processing module 122 determines whether it is speci-
fied to process the data field F1 referenced by the set field
command SF received in step Sé6c. In the present example,
data processing module 122 is not specified to process data
field F1, and data processing module 122 continues in step
S6e without reading data field F1 from the local memory 16.

In step S6e, data processing module 122 forwards to layout
module 13 the set field command SF received in step Séc.

In step S7, the layout module 13 reads the value of data
field F1 from the local memory 16, using the pointer received
with the set field command SF in step S6e. Using the pointer,
the layout module 13 determines the location of the data field
F1 in the local memory 16. Based on information about the
data structure of the data records R1, R2, R3, the layout
module 13 uses the index received with the set field command
SF to identify the current field in the current data record R1 as
data field F1, in connection with the previous sink command
S. Moreover, based on its workflow configuration data and for
generating the page-oriented data output, the layout module
13 associates the unprocessed data field F1 with a respective
location or placeholder of the defined document layout or
template.

In step S8a, the data input module 11 issues to the subse-
quent data processing module 121 a set field command SF
whereby the pointer to the variable data includes an index to
the next data field F2, thereby, passing data field F2 by refer-
ence to data processing module 121.

US 9,146,905 B2

11

In step S84, based on its workflow configuration data, in
the present example, the data processing module 121 deter-
mines that it is specified to process the data field F2 refer-
enced by the set field command SF received in step S8a.

In step S8c, data processing module 121 reads the value of
data field F2 from the local memory 16 and generates a
pre-processed version of data field F2 by applying operations
to the data field F2 as specified in the workflow configuration
data associated with data processing module 121, e.g. by
reformatting data field F2. The data processing module 121
uses the pointer to determine the location of the data field F2
in the local memory 16. Based on information about the data
structure of the data records R1, R2, R3, the data processing
module 121 uses the index, in connection with the previous
sink command S, to identify the current field in the current
data record R1 as data field F2. Furthermore, data processing
module 121 stores the pre-processed (reformatted) data field
F2 in the local memory 16, and determines a pointer to the
pre-processed data field F2 in the local memory 16. Alterna-
tively, for multi-field operations that apply to more than one
data field, the data processing module 121 stores a copy of the
unprocessed data field F2 in the local memory 16. For multi-
field operations, processing of the respective data fields takes
place when the set field command refers to the last data field
required for the multi-field operation, and the data processing
module 121 has read the values of all required data fields from
the local memory 16. Subsequently, the data processing mod-
ule 121 stores the data value resulting from performing the
multi-field operation in the local memory 16, and determines
a pointer to the data result in the local memory 16.

In step S84, data processing module 121 replaces the
pointer in the set field command SF of step S8a with the
pointer referring to the pre-processed data field F2 (or the
result of a multi-field operation), and forwards the altered set
field command SF to the subsequent data processing module
122 (keeping the index set to data field F2).

In step S8e, based on its workflow configuration data, the
data processing module 122 determines that, in the present
example, it is not specified to process the data field F2 refer-
enced by the set field command SF received in step S84, and
continues in step S8f ' without reading the pre-processed data
field F2 from the local memory 16.

In step S8/, data processing module 122 forwards to layout
module 13 the set field command SF received in step S8d.

In step S9, the layout module 13 reads the value of the
pre-processed data field F2 from the local memory 16, using
the pointer received with the set field command SF in step S8/
to determine the location of the pre-processed data field F2 in
the local memory 16. Moreover, based on its workflow con-
figuration data and for generating the page-oriented data out-
put, the layout module 13 associates the pre-processed data
field F2 with the respective location or placeholder of the
defined document layout or template, using the index
received with the set field command SF to identify the current
field in the current data record R1 as data field F2.

In step S10, if not all specified data fields of data record R1
were loaded in step S3, the data input module 11 loads the
data fields F31, F32 associated with the lower hierarchical
level R11 of data record R1 from the data store 2 into the local
memory 16, as specified in the workflow configuration 17.

In step S11a, the data input module 11 issues to the subse-
quent data processing module 121 a sink command S, indi-
cating to the data processing module 121 that a lower hierar-
chical level of data record R1 is being accessed.

In steps S115 and S11c, the sink command S is forwarded
by data processing module 121 through data processing mod-
ule 122 to the layout module 13.

20

30

40

45

55

12

In step S12, depending on the embodiment, the data input
module 11 determines a pointer to the hierarchically lower
data fields F31, F32 loaded in the local memory 16.

In step S13aq, the data input module 11 issues to the subse-
quent data processing module 121 a set field command SF
with a pointer and index to data field F31.

In step S13b, based on its workflow configuration data, in
the present example, the data processing module 121 deter-
mines that it is specified to process the data field F31 refer-
enced by the set field command SF received in step S13a.

Instep S13c¢, data processing module 121 reads the value of
data field F31 from the local memory 16, using the pointer
included in the set field command of step S13a, generates a
pre-processed version of data field F31 as specified in the
respective configuration data, stores the pre-processed data
field F31 in the local memory 16, and determines a pointer to
the pre-processed data field F31 in the local memory 16.
Alternatively, for a multi-field operation, data processing
module 121 reads the value of data field F31 from the local
memory 16, stores a copy of the unprocessed data field F31
for processing when all required fields are retrieved, or per-
forms the multi-field operation, if all required data fields are
known, and stores the result from the multi-field operation in
the local memory 16.

In step S13d, data processing module 121 replaces the
pointer in the set field command SF of step S13a with the
pointer referring to the pre-processed data field F31 (or the
result of a multi-field operation), and forwards the altered set
field command SF to the subsequent data processing module
122 (keeping the index set to data field F31).

In step S13e, based on its workflow configuration data, in
the present example, the data processing module 122 deter-
mines that it is specified to process the data field F31 refer-
enced by the set field command SF received in step S134.

In step S13f, data processing module 122 reads the value of
the pre-processed data field F31 from the local memory 16,
using the pointer included in the set field command of step
S13d, generates a further processed version of pre-processed
datafield F31 as specified in the respective configuration data,
stores the further processed data field F31 in the local memory
16, and determines a pointer to the further processed data field
F31 in the local memory 16. Alternatively, the data processing
module 122 may store or process the value of data field F31 as
part of a multi-field operation.

In step S13g, data processing module 122 replaces the
pointer in the set field command SF of step S13d with the
pointer referring to the further processed data field F31 (or the
result of a multi-field operation), and forwards the altered set
field command SF to the layout module 13 (keeping the index
set to data field F31).

In step S14, the layout module 13 reads the value of the
further processed data field F31 from the local memory 16,
using the pointer received with the set field command SF in
step S13g. Moreover, based on its workflow configuration
data and for generating the page-oriented data output, the
layout module 13 associates the further processed data field
F31 with the respective location or placeholder of the defined
document layout or template, using the index received with
the set field command SF to identify the current field in the
current data record R1 as data field F31.

In subsequent steps, data field F32 is processed accord-
ingly and, in steps S15a, S15b and S15c¢, a raise command R
is issued by the data input module 11 and forwarded through
the subsequent data processing modules 121, 122 to the lay-
out module 13, indicating that a higher hierarchical level of
data record R1 is being accessed.

US 9,146,905 B2

13

In further steps, data fields F4 and F5 are processed accord-
ingly, and having reached the last data field of data record R1
to be processed, in step S16, data input module 11 determines
whether there are further records of the variable data 20 to be
processed. If there are further data records R2, R3 to be
processed, processing continues in step S3; otherwise, pro-
cessing continues in step S17a.

In steps S17a,17b,17¢, araise command R is issued by the
data input module 11 and forwarded through the subsequent
data processing modules 121, 122 to the layout module 13,
indicating that the end of the variable data has been reached
and all data records have been processed.

In step S18, the layout module 13 generates the page-
oriented data output from the unprocessed and pre-processed
variable data read in the previous steps S7, S9, S14, and the
respective document layout and/or template definitions.

It should be noted that, in the description, the computer
program code has been associated with specific functional
modules and the sequence of the steps has been presented in
a specific order, one skilled in the art will understand, how-
ever, that the computer program code may be structured dif-
ferently and that the order of at least some of the steps could
be altered, without deviating from the scope of the invention.

What is claimed is:

1. A computer-implemented method of generating, from
variable data stored in a data store, page-oriented data output
for printing dynamic documents, the method comprising:

providing a series of serially connected data processing

modules,

linking in a computer a layout module to a data input

module through the series of serially connected data
processing modules;

assigning to the serially connected data processing mod-

ules a specification of one or more data fields to be
processed by each respective data processing module;
loading a part of the variable data by the data input module
from the data store into local memory of the computer;
passing a pointer to the variable data loaded by the data
input module from the data input module to a first data
processing module in the serially connected data pro-
cessing modules linked to the data input module;
determining by the first data processing module linked to
the data input module whether a first data field from the
variable data in the local memory is assigned to be
pre-processed by the first data processing module;
passing the pointer received from the data input module to
a second data processing module in the series of serially
connected data processing modules if the first data pro-
cessing module determines that the first data field is not
assigned to be processed by the first data processing
module;
reading and pre-processing the first data field, storing the
pre-processed first data field in the local memory and
passing a pointer to the pre-processed first data field to
the second data processing module by the first data data
processing module if the first data processing module
determines that the first data field is assigned to be pre-
processed only by the first data processing module;
receiving by the layout module pointers to the variable data
and to pre-processed variable data from the data process-
ing modules linked to the layout module, and
generating the page-oriented data output by the layout
module from pre-processed variable data and variable
data loaded by the data input module, using the pointers.

2. The method of claim 1, wherein, in cases where the data
field is configured to be processed by the respective data
processing module, the respective data processing module

10

15

20

25

30

35

40

45

50

55

60

65

14

stores the pre-processed variable data in the local memory
separate from the variable data loaded by the data input mod-
ule, and uses a pointer to the pre-processed variable data for
passing the pre-processed variable data by reference to the
layout module.

3. The method of claim 1, wherein, in cases where the
respective data processing module is configured to perform a
combined operation on more than data field, the respective
data processing module generates pre-processed variable
data from these data fields, stores the pre-processed variable
data in the local memory, and uses a pointer to the pre-
processed variable data for passing the pre-processed variable
data by reference to the layout module.

4. The method of claim 1, wherein the variable data is
loaded from the data store record by record and at least one
data field of a record is loaded at a time; the variable data is
passed field by field by the data input module through the data
processing modules to the layout module, using in each case
apointer to the data field loaded in the local memory, the data
processing modules reading the loaded data field from the
local memory only in cases where the loaded data field is
configured to be processed by the respective data processing
module, and in such cases the respective data processing
module generates from one or more of the loaded data fields
a pre-processed data field, stores the pre-processed data field
in the local memory, and uses a pointer to the pre-processed
data field, instead of the pointer to the loaded data field, for
passing the pre-processed data field by reference to the layout
module, and the layout module generates the page-oriented
data output from loaded data fields and pre-processed data
fields associated with a record.

5. The method of claim 1, wherein the variable data is
loaded from the data store record by record, each data record
having a hierarchical structure; data fields associated with one
hierarchical level of a record are loaded into the local memory
at a time; and an indication of the current hierarchical level is
communicated from the data input module through the data
processing modules to the layout module.

6. The method of claim 5, wherein the current hierarchical
level is communicated by the data input module forwarding
through the data processing modules to the layout module
sink commands for descending to a lower hierarchical level,
and raise commands for ascending to a higher hierarchical
level.

7. The method of claim 1, wherein the variable data is
loaded from the data store record by record, the data process-
ing modules are provided with information about the struc-
ture of the record, and the pointer includes an index for
identifying a data field with reference to the structure of the
record.

8. The method of claim 1, wherein a request for data is
forwarded from the layout module through the data process-
ing modules to the data input module, and the data input
module loads the variable data from the data store into local
memory in response to the request for data.

9. A computer system for generating, from variable data
stored in a data store, page-oriented data output for printing
dynamic documents, the system comprising

a data input module,

a plurality of data processing modules connected in series,

and

a layout module;

the layout module being linked in series with the data

processing modules to the data input module;

the data input module being configured to load a part of the

variable data from the data store into local memory, and
to pass the variable data by reference through the data

US 9,146,905 B2

15

processing modules to the layout module, using in each
case a pointer to the part of the variable data loaded in the
local memory;

each respective data processing module being assigned to

read an assigned data field from the variable data in the
local memory;

each data processing module is configured to determine

whether the pointer received from the data input module
refers to an assigned data field and to read the data field
if the received pointer references an assigned data field,
to generate and store in the local memory pre-processed
variable data from the variable data ofthe read data field,
to pass a pointer to the pre-processed variable data in the
local memory to the layout module if the pointer
received from the data input module refers to an
assigned data field, and to pass the pointer received from
the data input module to the la out module if the received
pointer does not refer to an assigned data field; and

the layout module being further configured to generate the

page-oriented data output from pre-processed variable
data and variable data loaded by the data input module
using the pointers received from the data processing
modules linked to the layout module.

10. The computer system of claim 9, wherein the data
processing modules are configured, in cases where the
respective data field is configured to be processed by the
respective data processing module, to store the pre-processed
variable data in the local memory separate from the variable
data loaded by the data input module, and to use a pointer to
the pre-processed variable data for passing the pre-processed
variable data by reference to the layout module.

11. The computer system of claim 9, wherein the data
processing modules are configured, in cases where more than
one data field is configured to be processed in combination by
the respective data processing module, to generate pre-pro-
cessed variable data from these data fields, to store the pre-
processed variable data in the local memory, and to use a
pointer to the pre-processed variable data for passing the
pre-processed variable data by reference to the layout mod-
ule.

12. The computer system of claim 9, wherein the data input
module is configured to load the data from the data store
record by record and at least one data field of a record at a
time, to pass the variable data field by field through the data
processing modules to the layout module, using in each case
apointer to the data field loaded in the local memory; the data
processing modules are configured to read the loaded data
field from the local memory only in cases where the loaded
data field is configured to be processed by the respective data
processing module, and in such cases to generate from one or
more of the loaded data fields a pre-processed data field, to
store the pre-processed data field in the local memory, and use
apointer to the pre-processed data field, instead of the pointer
to the loaded data field, for passing the pre-processed data
field by reference to the layout module; and the layout module
is further configured to generate the page-oriented data output
from loaded data fields and pre-processed data fields associ-
ated with a record.

13. The computer system of claim 9, wherein the data input
module is configured to load the data from the data store
record by record, each data record having a hierarchical struc-
ture, data fields associated with one hierarchical level of a
record being loaded into the local memory at a time, and to
communicate an indication of the current hierarchical level
through the data processing modules to the layout module.

14. The computer system of claim 13, wherein the data
input module is configured to communicate the current hier-

10

20

25

30

35

40

45

50

55

60

65

16

archical level by forwarding through the data processing
modules to the layout module sink commands for descending
to a lower hierarchical level, and raise commands for ascend-
ing to a higher hierarchical level.

15. The computer system of claim 9, wherein the data input
module is configured to load the variable data from the data
store record by record, the data processing modules are pro-
vided with information about the structure of the record, and
the pointer includes an index for identifying a data field with
reference to the structure of the record.

16. The computer system of claim 9, wherein the layout
module is configured to issue a request for data to the data
processing module linked to the layout module; the data
processing modules are configured in each case to forward the
request for data to the data processing module or the data
input module linked to the respective data processing module;
and the data input module is configured to load the variable
data from the data store into local memory in response to the
request for data.

17. A computer program product comprising a tangible
non-transitory computer-readable medium comprising com-
puter program code means, the computer program code
means being configured to control one or more processors of
a computer system such that the computer system:

links in the computer system a layout module in series with

a plurality of data processing modules to a data input
module the plurality of data processing modules being
connected in series,

loads for the data input module a part of variable data from

a data store into local memory; passes the variable data
by reference from the data input module through the data
processing modules to the layout module using a pointer
to the part of variable data loaded in the local memory;
assigns a data field to each data processing module; in
each data processing module, determines whether a
pointer received from the data input module refers to an
assigned data field; with each data processing module,
reads, pre-processes and stores in the local memory pre-
processed variable data of an assigned data field; from
each data processing module, passes a pointer to the data
field if the pointer received from the data input module
does not refer to an assigned data field and passes a
pointer to the pre-processed variable data if the pointer
received from the data input module refers to an
assigned data field; and

generates, for printing dynamic documents, page-oriented

data output for the layout module from pre-processed
variable data and variable data loaded for the data input
module using the pointers from the data processing
modules linked to the layout module.

18. A computer system for generating, from variable data
stored in a data store, page-oriented data output for printing
dynamic documents, the system comprising

a data input module,

a plurality of data processing modules connected in series,

a layout module, and

an output module;

the layout module being linked in series with the data

processing modules to the data input module;

the data input module being configured to load a part of the

variable data from the data store into local memory, and
to pass the variable data by reference through the data
processing modules to the layout module, using a
pointer to the part of the variable data loaded in the local
memory;

US 9,146,905 B2

17

each respective data processing module being assigned to
read an assigned data field from the variable data in the
local memory;
each data processing module is configured to determine
whether the pointer received from the data input module
refers to an assigned data field and to read the data field
if the received pointer references an assigned data field,
to generate and store in the local memory pre-processed
variable data from the variable data ofthe read data field,
to pass a pointer to the pre-processed variable data in the
local memory to the layout module if the pointer
received from the data input module refers to an
assigned data field, and to pass the pointer received from
the data input module to the layout module if the
received pointer does not refer to an assigned data field;

the layout module being further configured to generate the
page-oriented data output from pre-processed variable
data and variable data loaded by the data input module
using the pointers received from the data processing
modules linked to the layout module; and the output
module being configured to output at least one dynamic
document based on the page-oriented data output to at
least one of a printer and a display.

19. A computer program product comprising a tangible
non-transitory computer-readable medium comprising com-
puter program code means, the computer program code
means being configured to control one or more processors of
a computer system such that the computer system

links in the computer system a layout module in series with

a plurality of data processing modules to a data input
module the data processing modules being connected in
series,
loads for the data input module a part of variable data from
a data store into local memory;

passes the variable data by reference from the data input
module through the data processing modules to the lay-
out module using a pointer to the part of variable data
loaded in the local memory; assigns a data field to each
data processing module; in each data processing mod-
ule, determines whether a pointer received from the data
input module refers to an assigned data field; with each
data processing module, reads, pre-processes and stores
in the local memory pre-processed variable data of an
assigned data field; from each data processing module,
passes a pointer to the data field if the pointer received
from the data input module does not refer to an assigned
data field and passes a pointer to the pre-processed vari-
able data if the pointer received from the data input
module refers to an assigned data field,

generates, for printing dynamic documents, page-oriented

data output for the layout module from pre-processed
variable data and variable data loaded for the data input

10

20

25

40

45

50

18

module using the pointers from the data processing
modules linked to the layout module; and

outputs at least one dynamic document based on the page-
oriented data output to at least one of a printer and a
display.
20. A computer-implemented method of generating, from
variable data stored in a data store, page-oriented data output
for printing dynamic documents, the method comprising:

providing a series of serially connected data processing
modules,

linking in a computer a layout module to a data input
module through the series of serially connected data
processing modules;

assigning to the serially connected data processing mod-
ules a specification of one or more data fields to be
processed by each respective data processing module;

loading a part of the variable data by the data input module
from the data store into local memory of the computer;

passing a pointer to the variable data loaded by the data
input module from the data input module to a first data
processing module in the serially connected data pro-
cessing modules linked to the data input module;

determining by the first data processing module linked to
the data input module whether a first data field from the
variable data in the local memory is assigned to be
pre-processed by the first data processing module;

passing the pointer received from the data input module to
a second data processing module in the series of serially
connected data processing modules if the first data pro-
cessing module determines that the first data field is not
assigned to be processed by the first data processing
module;

reading and pre-processing the first data field, storing the
pre-processed first data field in the local memory and
passing a pointed to the pre-processed first data field to
the second data processing module by the first data pro-
cessing module if the first data processing module deter-
mines that the first data field is assigned to be pre-
processed only by the first data processing module;

receiving by the layout module pointers to the variable data
and to pre-processed variable data from the data process-
ing modules linked to the layout module,

generating the page-oriented data output by the layout
module from pre-processed variable data and variable
data loaded by the data input module, using the pointers;

outputting at least one dynamic document based on the
page-oriented data output to at least one of a printer and
a display.

